University	Peter the Great St.Petersburg Polytechnic University
· · ·	Proficient (C2)
Level of English proficiency Educational program and field of	BIOLOGY & BIOTECHNOLOGY
the educational program for	PHYSICAL SCIENCES & TECHNOLOGY
which the applicant will be	1.5.2 Biophysics
accepted	1.5.2 Diophysics
List of research projects of the	• Inference of fitness landscape of a population of
potential supervisor	organisms from DNA data
(participation/leadership)	• Modeling the evolution of new variants of concern of
(purticipation/leadership)	SARS CoV-2
	• Modeling the evolution of immunologically important
	regions of the virus and the role of vaccination in evolution
List of the topics offered for the	• Inference of fitness landscape of a population of
prospective scientific research	organisms from DNA data
	• Modeling the evolution of new variants of concern of
	SARS CoV-2
	• Modeling the evolution of immunologically important
	regions of the virus and the role of vaccination in evolution.
	1.07. Other natural sciences
	Supervisor's research interests
	Pathogens evolve rapidly to circumvent drug treatments and
	immune surveillance, which dramatically impacts public health.
	Research and treatment are complicated by high genetic diversity
	of some viruses within and across infected individuals, as well as
	their complex evolutionary mechanisms, including selection,
	random genetic drift, and temporal variation in a host environment.
AND A COMMAN	Moreover, many pathogens have a large number of linked sites
	approximately 102 -103 for HIV and hepatitis C virus (HCV) that
	evolve simultaneously and inter-dependently through two different
Research supervisor:	effects, "epistasis" due to interaction between proteins and
-	signaling network, and site linkage due to common ancestry. Our
Igor Rouzine	research is focused on developing mathematical tools that predict
Ph.D., Associate Professor	evolution of pathogens with strong linkage effects, including
Organization awarding degree:	analytic and computational methods and estimators of
A.F. Ioffee Physico-Tehnical	evolutionary parameters from sequence data.
Institute RAS	Research highlights
	• Inference of fitness landscape of a population of organisms
	from DNA data
	• Modeling the evolution of new variants of concern of
	SARS CoV-2
	• Modeling the evolution of immunologically important
	regions of the virus and the role of vaccination in evolution.
	Supervisor's specific requirements:
	Knowledge Calculus, Linear Algebra, written English B2 oral B1,
	programming skills in MATLAM or Python
	Supervisor's main publications Rouzine IM* and Rozhnova G* (2023) Evolutionary implications
	of SARS-CoV-2 vaccination for the future design of vaccine
	strategies, Communications Medicine, accepted for publication.
	Likhachev IV and Rouzine IM* (2023) Measurement of selection
	coefficients from genomic samples of adapting populations by
	computer modeling, STAR Protocols 4, 101821.
L	(0) = 10000005 T, 101021.

Rouzine, IM. (2022) A role for CD4 helper cells in HIV control
and progression. AIDS 36:1501–1510. IF 4.2
Shirogane Y, Rousseau E, Voznica J, Xiao Y, Su W, Catching A,
Whitfield ZJ, Rouzine IM, Bianco* S, Andino* R. (2021)
Experimental and mathematical insights on the interactions
between poliovirus and a defective interfering genome. PLoS
Pathogens 17, e1009277 IF 6.2
Pedruzzi G, Rouzine* IM (2021) An evolution-based high-fidelity
method of epistasis measurement: theory and application to
influenza. PLoS Pathogens 17, e1009669. IF 6.2
Barlukova A, Rouzine* IM (2021) The evolutionary origin of the
universal distribution of mutation fitness effect. PLoS Comp. Bio. 17, e1008822. IF 4.5
Rouzine IM (2020) An evolutionary model of progression to
AIDS. Microorganisms 8, 1714 IF 4.2
•
Pedruzzi G, Rouzine IM * (2019) Epistasis detectably alters
correlations between genomic sites in a narrow parameter window.
PLoS ONE 14, e0214036.
Pedruzzi G, Barlukova A, Rouzine* IM (2018) Evolutionary
footprint of epistasis. PLoS Computational Biology 14, e1006426.
IF 4.5
Rouzine* IM, Rozhnova G (2018) Antigenic evolution of viruses
in host populations. PLoS Pathogens 14, e1007291. IF 6.5
Results of intellectual activity
Books:
Rouzine IM. (2023) "Mathematical Models of Evolution. Volume
2: Fitness Landscape, Red Queen, Evolutionary Enigmas, and
Applications to Virology", in series Mathematics and life sciences,
De Gruyter, Berlin/Boston.
Rouzine IM. (2020) "Mathematical Models of Evolution. Volume
1: One-locus and multi-locus theory and recombination", in series
Mathematics and life sciences, De Gruyter, Berlin/Boston.
Peer-reviewed:
Rouzine* IM, Wakeley J, Coffin JM (2003) The solitary wave of
asexual evolution. Proc Nat Acad Sci 100: 587-592
The first accurate mathematical analysis predicting the evolution
rate of a population with a large number of linked loci in the
absence of recombination.
Rouzine IM, Weinberger, AD, and Weinberger*, LS (2015) An
evolutionary role for HIV latency in enhancing viral transmission.
Cell 160, 1002–12
An evolutionary role for HIV latency as a Trojan horse effect
during transmission.
0
Rouzine* IM, Coffin JM (2001) Transition between stochastic
evolution and deterministic evolution in the presence of selection:
general theory and application to virology [review]. Microbio Mol
Bio Rev 65: 151-185
The classical stochastic theory of one-locus evolution 1930-1970
reviewed and adapted to virology.
IM Rouzine (2020) An evolutionary model of progression to
AIDS. Microorganisms 8, 1714
https://doi.org/10.3390/microorganisms8111714

The first closed model of progression to AIDS based on gradual
adaptation of HIV to a host.
Rouzine* IM and Rozhnova G (2018) Antigenic evolution of viruses in host populations. PLoS Pathogens 14, e1007291 A model of genetic evolution of a virus in a host population accumulating the immune memory connects epidemiology to immunology and the modern evolution theory. The predicted parameters are tested against data for influenza A.
Batorsky R, Kearney MF, Palmer SE, Maldarelli F, Rouzine* IM, Coffin JM (2011) Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection. Proc
Natl Acad Sci U S A 108: 5661 Rouzine* IM, Coffin JM (1999) Linkage disequilibrium test implies a large effective population number for HIV in vivo. Proc Nat Acad Sci 96: 10758-10763
The effective population size and the effective recombination rate
of HIV are estimated correctly for the first time. Rouzine* IM, Coffin JM (2005) Evolution of HIV under selection
and weak recombination. Genetics 170: 7-18
Rouzine*, IM, and Coffin, JM (2010) Many-site adaptation in the presence of infrequent recombination. Theor Pop Bio 77: 189-204
Recombination is incorporated in the multi-locus evolution theory.
Rouzine* IM, Coffin JM (1999) Search for the mechanism of evolution in the progene of HIV in vivo. J Virol 73: 8167-8178.
The high diversity of HIV within and between infected individuals
is explained as a result of compensatory mutations for the early
escape mutations in CD8 T cell epitopes.