University	Peter the Great St.Petersburg Polytechnic University
Level of English proficiency	Upper Intermediate
Educational program and field	PHYSICAL SCIENCE
of the educational program for	1.5.2. Biophysics
which the applicant will be	BIOLOGY & BIOTECHNOLOGY
accepted	1.5.3. Molecular biology
	<u>COMPUTER & DATA SCIENCE</u>
	1.2.2. Mathematical Modeling, Numerical Methods and
	Software roots
List of research projects of the	- Endoplasmic reticulum in the functioning of synapses
potential supervisor	in normal state and in Alzheimer's disease, the role of
(participation/leadership)	dynamic tubulin cytoskeleton in the regulation of its
	calcium signaling
	- Algorithms for synapse morphology analysis,
	modeling of neurodegenerative processes and calcium
	signaling in synapses in normal state and in Alzheimer's
	A polyois of the activity of pourol networks using
	- Analysis of the activity of neural networks using miniature fluorescence microscopy, modeling of
	processes in the functioning of biological neural
	networks based on neurobiological data
List of the topics offered for the	The study of the molecular mechanisms of synapse
prospective scientific research	functioning in normal state and neurodegeneration, the
	search for connections and approaches to protect synapses
	from degeneration in Alzheimer's disease, algorithms for
	synapses morphology, brain neural networks analysis and
	deconvolution of confocal images using machine learning
	and artificial intelligence methods
	1.6 Biological sciences
	Supervisor's research interests
	Molecular mechanisms of synapse functioning
	Alzheimer's disease mechanisms of pathogenesis and the
	search for therapeutic approaches for its treatment
	Algorithms and software for the neurobiological data
os ite t at.	analysis
	Deconvolution/microscopic image processing
	Research highlights
Research supervisor:	Research in the field of Friction Sur weiding will be
Ekaterina Pehitskava	equipment: 5-axis FSW machine with the options for
DI D	Impulse and High-Speed FSW: thermomechanical simulator
PnD	Gleeble-3800; supercomputer.
	Supervisor's specific requirements:
	Having a scholarship or grant for training and internships is
	a significant advantage over competitors.
	High motivation to solve the tasks, the ability to analyze the
	literature, propose solutions and analyze the result.

Knowledge of the basics of programming, data analysis, statistics, modern methods of neuroscience and molecular
neurobiology.
Knowledge of English is required at a level sufficient to
discuss and plan work. Knowledge of the basics of the
Russian language is welcome.
Results of intellectual activity
- Demonstrated store-operated calcium entry (SOCE),
endoplasmic reticulum (ER) calcium signaling and
subsequent dendritic spines morphology abnormalities and in
vivo and in vitro models of Alzheimer's disease.
Demonstrated neuroprotective effect pharmacological or
biological restoration of SOCE in Alzheimer's disease
models, determined this pathway as potential target for new
AD non-amyloid treatment strategy development
- Determine end-binding proteins (EB), attaching to the
plus end of growing microtubule, as new binding partner of
STIM2. a calcium sensor protein and the key component of
SOCE signaling pathway. EB regulates STIM2 translocation
and clustering in soma and dendrites of neurons. ER
distribution and formation of spine apparatus in neurons –
specialized neuronal organelle, formed by stacks of ER.
linked to the synaptic plasticity processes
- Firstly, SOCE regulation by dynamic tubulin
cytoskeleton in neurons was demonstrated
- Showed, that EB3 protein participates in neurites and
dendritic spines development, potentiates formation of
mature synaptic contacts and CaMKII translocation to
spines, and demonstrate robust neuroprotective effect in
amyloid toxicity conditions, modeling AD, and in neurons
with presenilin 1 AD-causing mutation
- Demonstrated apoptosis regulator Bcl-2 protein
neuroprotective potential in vivo studies on AD mice model.
Publications:
1. Gerasimov, E.; Mitenev, A.; Pchitskaya, E.; Chukanov,
V.; Bezprozvanny, I. NeuroActivityToolkit—Toolbox for
Quantitative Analysis of Miniature Fluorescent Microscopy
Data // J. Imaging 2023; 9: 243.
https://www.mdpi.com/2313-433X/9/11/243
DOI:10.3390/jimaging9110243
Impact Factor: 4.6
Quartile Q2 according to Scopus SJR database
2. Pchitskaya E., Vasiliev P., Smirnova D., Chukanov V.,
Bezprozvanny I. SpineTool is an open-source software for
analysis of morphology of dendritic spines // Sci Rep, 2023;
13: 10561.
https://www.nature.com/articles/s41598-023-37406-4
DOI:10.1038/s41598-023-3/406-4
Impact Factor: 4.6
Quartile Q1 according to Scopus SJR database

3. Rakovskaya A., Chigriai M., Bezprozvanny I., Pchitskaya E. Expansion Microscopy Application for Calcium Protein Clustering Imaging in Cells and Brain Tissues // Current Protocols, 2023; 3, e789. https://pubmed.ncbi.nlm.nih.gov/37338219/ DOI:10.1002/cpz1.789 Impact Factor: 0.87 Quartile Q1 according to Scopus SJR database
 4. Rakovskaya A., Erofeev A., Vinokurov E., Pchitskaya E., Dahl R., Bezprozvanny I. Positive Allosteric Modulators of SERCA Pump Restore Dendritic Spines and Rescue Long-Term Potentiation Defects in Alzheimer's Disease Mouse Model // International journal of molecular sciences, 2023; 24,18 13973. https://pubmed.ncbi.nlm.nih.gov/37762276/ DOI: 10.3390/ijms241813973. Impact Factor: 6.0 Quartile Q1 according to Scopus SJR database
5. Chernyuk D., Callens M., Polozova M., Gordeev A., Chigriai M., Rakovskaya A., Ilina A., Pchitskaya E., Van den Haute C., Vervliet T., Bultynck G., Bezprozvanny I Neuroprotective properties of anti-apoptotic Bcl-2 proteins in 5xFAD mouse model of Alzheimer's disease // IBRO Neuroscience Reports, 2023; 14 273-283. https://pubmed.ncbi.nlm.nih.gov/36926591/ DOI:10.1016/j.ibneur.2023.02.005. Impact Factor: 2.7 Quartile Q3 according to Scopus SJR database
6. Gerasimov, E., Pchitskaya, E., Bezprozvanny, I. TREM2 and calcium signaling in microglia – is it relevant for Alzheimer's disease? // Cell Calcium, 2022; 104:102584 https://pubmed.ncbi.nlm.nih.gov/35366517/ DOI: 10.1016/j.ceca.2022.102584 Impact Factor: 4.69 Quartile Q1 according to Scopus SJR database
 7. Pchitskaya, E., Rakovskaya, A., Chigray, M., Bezprozvanny, I. Cytoskeleton Protein EB3 Contributes to Dendritic Spines Enlargement and Enhances Their Resilience to Toxic Effects of Beta-Amyloid // International Journal of Molecular Sciences, 2022; 23 (4): 2274 https://pubmed.ncbi.nlm.nih.gov/35216391 DOI: 10.3390/ijms23042274 Impact Factor: 6.2 Quartile Q1 according to Scopus SJR database

8. Erofeev A.I., Barinov D.S., Gerasimov E.I., Pchitskaya
E.I., Bolsunovskaja M.V., Vlasova O.L., Bezprozvanny I.B.
NeuroInfoViewer: A Software Package for Analysis of
Miniscope Data // Neuroscience and Behavioral Physiology,
2021: 51(8): 1199-1205
https://link.springer.com/article/10.1007/s11055-021-
01179-v
DOI: 10.1007/s11055-021-01179-y
Impact Factor: -
Quartile Q4 according to Scopus SJR database
9. Derevtsova K.Z., Pchitskava E.I., Rakovskava, A.V.,
Bezprozyanny I.B. Applying the Expansion Microscopy
Method in Neurobiology // I Evol Biochem Phys 2021
57.681_693
57.001-055. https://link.springer.com/article/10.1134/\$00220930210301
57
DOI: 10 1134/S0022093021030157
Impact Factor: 0.44
Quartile OA according to Scopus SIR database
Quartine Q4 according to Scopus SIR database
10 Pehitskava F. Bezprozvanny I. Dendritic Spines Shape
Analysis Classification or Clusterization? Despective //
Frontiars in Symposic Neuroscience 2020, 12, 21
Frontiers in Synaptic Neuroscience, 2020 , 12 , 51
https://www.frontiersin.org/articles/10.3389/fnsyn.2020.000
31/full
DOI: 10.3389/fnsyn.2020.00031
Impact Factor: 4.71
Quartile Q1 according to Scopus SJR database
11 Pchitskava F Krylov I Vlasova O Bolsunovskava
M Bezprozyanny I Analysis of dendritic spines
morphology: from classical division to types toward
alternative approaches // St. Detersburg Delutechnical State
alternative approaches. // St. Petersburg Polytechnical State
Oniversity Journal. Physics and Mathematics. 2019; 12
https://physmath.spbstu.ru/userfiles/files/articles/2019/2/07-
Pchitskaya-eng.pdf
DOI: 10.18721/JPM.12207
Web of Science Core Collection