University	Peter the Great St.Petersburg Polytechnic University
Level of English proficiency	C1 (Advanced)
Educational program and field of the educational program for which the applicant will be accepted	PHYSICAL SCIENCES & TECHNOLOGY
List of research projects of the potential supervisor (participation/leadership)	 Development of models for describing the propagating fronts of phase and chemical transformations in relation to the processes of deformation and fracture of structural elements in microengineering applications Problems of mechanics of phase and chemical transformations in homogeneous and composite materials
List of the topics offered for the prospective scientific research	 Analytical and numerical studies of stress-induced phase transformations in the vicinity of stress concentrators. The influence of interconnections of stress-strain state and chemical reactions on the stability and fracture of structural elements in microelectronics.
Alexander Freidin Dr. Sci in Physics and Mathematics	<i>1.03. Physical sciences and astronomy</i> Interrelations of the stress-strain state and phase and chemical transformations
	Research highlights Interrelations of the stress-strain state and phase and chemical transformations
	 Supervisor's specific requirements: Background in Mechanics of Solids including small strains and finite strains formulations of Elasticity, Plasticity and Fracture Mechanics
	 To be familiar with thermodynamics To be an advanced user of finite element methods Related mathematical skills including tensor calculus and partial differential equations Readiness for analytical derivations and numerical simulations in interdisciplinary multiphysics problems.
	 Supervisor's main publications Morozov, A., Freidin, A.B., Müller, W.H. (2023) On stress-affected propagation and stability of chemical reaction fronts in solids. International Journal of Engineering Science. 189: 103876 Petrenko S., Freidin A.B., Charkaluk E. (2022) On chemical reaction planar fronts in an elastic-viscoelastic mechanical framework. Continuum Mechanics and Thermodynamics. 34(1):137-163. Freidin A.B., Sharipova L.L., Cherkaev A.V. (2021) On equilibrium two-phase microstructures at plane strain Acta Mechanica 232:2005-2021. M. Poluektov, A.B. Freidin, L. Figiel. (2019) Micromechanical modelling of mechanochemical processes in

 heterogeneous materials. Modelling and Simulation in Materials Science and Engineering 27(7):084005 A.B. Freidin, L.L. Sharipova (2019) Two-phase equilibrium microstructures against optimal composite microstructures. Arch Appl Mech 89(3):561-580.
 Results of intellectual activity The concept of the chemical affinity tensor is developed The procedures of interface stability analysis are elaborated The concept of phase transition zones is developed in stress-induced phase transformations